Copied to
clipboard

G = C5×C23.25D4order 320 = 26·5

Direct product of C5 and C23.25D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C5×C23.25D4, (C2×C8)⋊6C20, (C2×C40)⋊26C4, C4.3(Q8×C10), C8.16(C2×C20), C4.Q813C10, C2.D813C10, C20.92(C2×Q8), (C2×C20).78Q8, C40.125(C2×C4), (C2×C20).537D4, C20.101(C4⋊C4), C23.24(C5×D4), (C22×C8).11C10, (C22×C40).29C2, C4.26(C22×C20), C22.49(D4×C10), C10.115(C4○D8), C42⋊C2.6C10, (C2×C20).900C23, (C2×C40).436C22, C20.243(C22×C4), (C22×C10).128D4, (C22×C20).589C22, C4.21(C5×C4⋊C4), C2.2(C5×C4○D8), C2.13(C10×C4⋊C4), C10.92(C2×C4⋊C4), (C5×C2.D8)⋊28C2, (C5×C4.Q8)⋊28C2, C22.9(C5×C4⋊C4), (C2×C4).20(C5×Q8), C4⋊C4.43(C2×C10), (C2×C4).76(C2×C20), (C2×C8).76(C2×C10), (C2×C4).147(C5×D4), (C2×C10).54(C4⋊C4), (C2×C20).510(C2×C4), (C2×C10).625(C2×D4), (C5×C4⋊C4).364C22, (C2×C4).75(C22×C10), (C22×C4).118(C2×C10), (C5×C42⋊C2).20C2, SmallGroup(320,928)

Series: Derived Chief Lower central Upper central

C1C4 — C5×C23.25D4
C1C2C22C2×C4C2×C20C5×C4⋊C4C5×C4.Q8 — C5×C23.25D4
C1C2C4 — C5×C23.25D4
C1C2×C20C22×C20 — C5×C23.25D4

Generators and relations for C5×C23.25D4
 G = < a,b,c,d,e,f | a5=b2=c2=d2=1, e4=d, f2=dc=cd, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, fbf-1=bd=db, be=eb, ce=ec, cf=fc, de=ed, df=fd, fef-1=e3 >

Subgroups: 162 in 114 conjugacy classes, 82 normal (26 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, C23, C10, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C20, C20, C20, C2×C10, C2×C10, C2×C10, C4.Q8, C2.D8, C42⋊C2, C22×C8, C40, C2×C20, C2×C20, C2×C20, C22×C10, C23.25D4, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×C40, C2×C40, C22×C20, C5×C4.Q8, C5×C2.D8, C5×C42⋊C2, C22×C40, C5×C23.25D4
Quotients: C1, C2, C4, C22, C5, C2×C4, D4, Q8, C23, C10, C4⋊C4, C22×C4, C2×D4, C2×Q8, C20, C2×C10, C2×C4⋊C4, C4○D8, C2×C20, C5×D4, C5×Q8, C22×C10, C23.25D4, C5×C4⋊C4, C22×C20, D4×C10, Q8×C10, C10×C4⋊C4, C5×C4○D8, C5×C23.25D4

Smallest permutation representation of C5×C23.25D4
On 160 points
Generators in S160
(1 23 54 11 63)(2 24 55 12 64)(3 17 56 13 57)(4 18 49 14 58)(5 19 50 15 59)(6 20 51 16 60)(7 21 52 9 61)(8 22 53 10 62)(25 85 73 33 65)(26 86 74 34 66)(27 87 75 35 67)(28 88 76 36 68)(29 81 77 37 69)(30 82 78 38 70)(31 83 79 39 71)(32 84 80 40 72)(41 155 119 147 111)(42 156 120 148 112)(43 157 113 149 105)(44 158 114 150 106)(45 159 115 151 107)(46 160 116 152 108)(47 153 117 145 109)(48 154 118 146 110)(89 122 141 97 133)(90 123 142 98 134)(91 124 143 99 135)(92 125 144 100 136)(93 126 137 101 129)(94 127 138 102 130)(95 128 139 103 131)(96 121 140 104 132)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 37)(10 38)(11 39)(12 40)(13 33)(14 34)(15 35)(16 36)(17 85)(18 86)(19 87)(20 88)(21 81)(22 82)(23 83)(24 84)(41 126)(42 127)(43 128)(44 121)(45 122)(46 123)(47 124)(48 125)(49 74)(50 75)(51 76)(52 77)(53 78)(54 79)(55 80)(56 73)(57 65)(58 66)(59 67)(60 68)(61 69)(62 70)(63 71)(64 72)(89 107)(90 108)(91 109)(92 110)(93 111)(94 112)(95 105)(96 106)(97 115)(98 116)(99 117)(100 118)(101 119)(102 120)(103 113)(104 114)(129 147)(130 148)(131 149)(132 150)(133 151)(134 152)(135 145)(136 146)(137 155)(138 156)(139 157)(140 158)(141 159)(142 160)(143 153)(144 154)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 37)(10 38)(11 39)(12 40)(13 33)(14 34)(15 35)(16 36)(17 85)(18 86)(19 87)(20 88)(21 81)(22 82)(23 83)(24 84)(41 122)(42 123)(43 124)(44 125)(45 126)(46 127)(47 128)(48 121)(49 74)(50 75)(51 76)(52 77)(53 78)(54 79)(55 80)(56 73)(57 65)(58 66)(59 67)(60 68)(61 69)(62 70)(63 71)(64 72)(89 111)(90 112)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 119)(98 120)(99 113)(100 114)(101 115)(102 116)(103 117)(104 118)(129 151)(130 152)(131 145)(132 146)(133 147)(134 148)(135 149)(136 150)(137 159)(138 160)(139 153)(140 154)(141 155)(142 156)(143 157)(144 158)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)(65 69)(66 70)(67 71)(68 72)(73 77)(74 78)(75 79)(76 80)(81 85)(82 86)(83 87)(84 88)(89 93)(90 94)(91 95)(92 96)(97 101)(98 102)(99 103)(100 104)(105 109)(106 110)(107 111)(108 112)(113 117)(114 118)(115 119)(116 120)(121 125)(122 126)(123 127)(124 128)(129 133)(130 134)(131 135)(132 136)(137 141)(138 142)(139 143)(140 144)(145 149)(146 150)(147 151)(148 152)(153 157)(154 158)(155 159)(156 160)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 108 27 90)(2 111 28 93)(3 106 29 96)(4 109 30 91)(5 112 31 94)(6 107 32 89)(7 110 25 92)(8 105 26 95)(9 118 33 100)(10 113 34 103)(11 116 35 98)(12 119 36 101)(13 114 37 104)(14 117 38 99)(15 120 39 102)(16 115 40 97)(17 44 81 121)(18 47 82 124)(19 42 83 127)(20 45 84 122)(21 48 85 125)(22 43 86 128)(23 46 87 123)(24 41 88 126)(49 153 78 143)(50 156 79 138)(51 159 80 141)(52 154 73 144)(53 157 74 139)(54 160 75 142)(55 155 76 137)(56 158 77 140)(57 150 69 132)(58 145 70 135)(59 148 71 130)(60 151 72 133)(61 146 65 136)(62 149 66 131)(63 152 67 134)(64 147 68 129)

G:=sub<Sym(160)| (1,23,54,11,63)(2,24,55,12,64)(3,17,56,13,57)(4,18,49,14,58)(5,19,50,15,59)(6,20,51,16,60)(7,21,52,9,61)(8,22,53,10,62)(25,85,73,33,65)(26,86,74,34,66)(27,87,75,35,67)(28,88,76,36,68)(29,81,77,37,69)(30,82,78,38,70)(31,83,79,39,71)(32,84,80,40,72)(41,155,119,147,111)(42,156,120,148,112)(43,157,113,149,105)(44,158,114,150,106)(45,159,115,151,107)(46,160,116,152,108)(47,153,117,145,109)(48,154,118,146,110)(89,122,141,97,133)(90,123,142,98,134)(91,124,143,99,135)(92,125,144,100,136)(93,126,137,101,129)(94,127,138,102,130)(95,128,139,103,131)(96,121,140,104,132), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,37)(10,38)(11,39)(12,40)(13,33)(14,34)(15,35)(16,36)(17,85)(18,86)(19,87)(20,88)(21,81)(22,82)(23,83)(24,84)(41,126)(42,127)(43,128)(44,121)(45,122)(46,123)(47,124)(48,125)(49,74)(50,75)(51,76)(52,77)(53,78)(54,79)(55,80)(56,73)(57,65)(58,66)(59,67)(60,68)(61,69)(62,70)(63,71)(64,72)(89,107)(90,108)(91,109)(92,110)(93,111)(94,112)(95,105)(96,106)(97,115)(98,116)(99,117)(100,118)(101,119)(102,120)(103,113)(104,114)(129,147)(130,148)(131,149)(132,150)(133,151)(134,152)(135,145)(136,146)(137,155)(138,156)(139,157)(140,158)(141,159)(142,160)(143,153)(144,154), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,37)(10,38)(11,39)(12,40)(13,33)(14,34)(15,35)(16,36)(17,85)(18,86)(19,87)(20,88)(21,81)(22,82)(23,83)(24,84)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,121)(49,74)(50,75)(51,76)(52,77)(53,78)(54,79)(55,80)(56,73)(57,65)(58,66)(59,67)(60,68)(61,69)(62,70)(63,71)(64,72)(89,111)(90,112)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,119)(98,120)(99,113)(100,114)(101,115)(102,116)(103,117)(104,118)(129,151)(130,152)(131,145)(132,146)(133,147)(134,148)(135,149)(136,150)(137,159)(138,160)(139,153)(140,154)(141,155)(142,156)(143,157)(144,158), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128)(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)(140,144)(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)(156,160), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,108,27,90)(2,111,28,93)(3,106,29,96)(4,109,30,91)(5,112,31,94)(6,107,32,89)(7,110,25,92)(8,105,26,95)(9,118,33,100)(10,113,34,103)(11,116,35,98)(12,119,36,101)(13,114,37,104)(14,117,38,99)(15,120,39,102)(16,115,40,97)(17,44,81,121)(18,47,82,124)(19,42,83,127)(20,45,84,122)(21,48,85,125)(22,43,86,128)(23,46,87,123)(24,41,88,126)(49,153,78,143)(50,156,79,138)(51,159,80,141)(52,154,73,144)(53,157,74,139)(54,160,75,142)(55,155,76,137)(56,158,77,140)(57,150,69,132)(58,145,70,135)(59,148,71,130)(60,151,72,133)(61,146,65,136)(62,149,66,131)(63,152,67,134)(64,147,68,129)>;

G:=Group( (1,23,54,11,63)(2,24,55,12,64)(3,17,56,13,57)(4,18,49,14,58)(5,19,50,15,59)(6,20,51,16,60)(7,21,52,9,61)(8,22,53,10,62)(25,85,73,33,65)(26,86,74,34,66)(27,87,75,35,67)(28,88,76,36,68)(29,81,77,37,69)(30,82,78,38,70)(31,83,79,39,71)(32,84,80,40,72)(41,155,119,147,111)(42,156,120,148,112)(43,157,113,149,105)(44,158,114,150,106)(45,159,115,151,107)(46,160,116,152,108)(47,153,117,145,109)(48,154,118,146,110)(89,122,141,97,133)(90,123,142,98,134)(91,124,143,99,135)(92,125,144,100,136)(93,126,137,101,129)(94,127,138,102,130)(95,128,139,103,131)(96,121,140,104,132), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,37)(10,38)(11,39)(12,40)(13,33)(14,34)(15,35)(16,36)(17,85)(18,86)(19,87)(20,88)(21,81)(22,82)(23,83)(24,84)(41,126)(42,127)(43,128)(44,121)(45,122)(46,123)(47,124)(48,125)(49,74)(50,75)(51,76)(52,77)(53,78)(54,79)(55,80)(56,73)(57,65)(58,66)(59,67)(60,68)(61,69)(62,70)(63,71)(64,72)(89,107)(90,108)(91,109)(92,110)(93,111)(94,112)(95,105)(96,106)(97,115)(98,116)(99,117)(100,118)(101,119)(102,120)(103,113)(104,114)(129,147)(130,148)(131,149)(132,150)(133,151)(134,152)(135,145)(136,146)(137,155)(138,156)(139,157)(140,158)(141,159)(142,160)(143,153)(144,154), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,37)(10,38)(11,39)(12,40)(13,33)(14,34)(15,35)(16,36)(17,85)(18,86)(19,87)(20,88)(21,81)(22,82)(23,83)(24,84)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,121)(49,74)(50,75)(51,76)(52,77)(53,78)(54,79)(55,80)(56,73)(57,65)(58,66)(59,67)(60,68)(61,69)(62,70)(63,71)(64,72)(89,111)(90,112)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,119)(98,120)(99,113)(100,114)(101,115)(102,116)(103,117)(104,118)(129,151)(130,152)(131,145)(132,146)(133,147)(134,148)(135,149)(136,150)(137,159)(138,160)(139,153)(140,154)(141,155)(142,156)(143,157)(144,158), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128)(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)(140,144)(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)(156,160), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,108,27,90)(2,111,28,93)(3,106,29,96)(4,109,30,91)(5,112,31,94)(6,107,32,89)(7,110,25,92)(8,105,26,95)(9,118,33,100)(10,113,34,103)(11,116,35,98)(12,119,36,101)(13,114,37,104)(14,117,38,99)(15,120,39,102)(16,115,40,97)(17,44,81,121)(18,47,82,124)(19,42,83,127)(20,45,84,122)(21,48,85,125)(22,43,86,128)(23,46,87,123)(24,41,88,126)(49,153,78,143)(50,156,79,138)(51,159,80,141)(52,154,73,144)(53,157,74,139)(54,160,75,142)(55,155,76,137)(56,158,77,140)(57,150,69,132)(58,145,70,135)(59,148,71,130)(60,151,72,133)(61,146,65,136)(62,149,66,131)(63,152,67,134)(64,147,68,129) );

G=PermutationGroup([[(1,23,54,11,63),(2,24,55,12,64),(3,17,56,13,57),(4,18,49,14,58),(5,19,50,15,59),(6,20,51,16,60),(7,21,52,9,61),(8,22,53,10,62),(25,85,73,33,65),(26,86,74,34,66),(27,87,75,35,67),(28,88,76,36,68),(29,81,77,37,69),(30,82,78,38,70),(31,83,79,39,71),(32,84,80,40,72),(41,155,119,147,111),(42,156,120,148,112),(43,157,113,149,105),(44,158,114,150,106),(45,159,115,151,107),(46,160,116,152,108),(47,153,117,145,109),(48,154,118,146,110),(89,122,141,97,133),(90,123,142,98,134),(91,124,143,99,135),(92,125,144,100,136),(93,126,137,101,129),(94,127,138,102,130),(95,128,139,103,131),(96,121,140,104,132)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,37),(10,38),(11,39),(12,40),(13,33),(14,34),(15,35),(16,36),(17,85),(18,86),(19,87),(20,88),(21,81),(22,82),(23,83),(24,84),(41,126),(42,127),(43,128),(44,121),(45,122),(46,123),(47,124),(48,125),(49,74),(50,75),(51,76),(52,77),(53,78),(54,79),(55,80),(56,73),(57,65),(58,66),(59,67),(60,68),(61,69),(62,70),(63,71),(64,72),(89,107),(90,108),(91,109),(92,110),(93,111),(94,112),(95,105),(96,106),(97,115),(98,116),(99,117),(100,118),(101,119),(102,120),(103,113),(104,114),(129,147),(130,148),(131,149),(132,150),(133,151),(134,152),(135,145),(136,146),(137,155),(138,156),(139,157),(140,158),(141,159),(142,160),(143,153),(144,154)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,37),(10,38),(11,39),(12,40),(13,33),(14,34),(15,35),(16,36),(17,85),(18,86),(19,87),(20,88),(21,81),(22,82),(23,83),(24,84),(41,122),(42,123),(43,124),(44,125),(45,126),(46,127),(47,128),(48,121),(49,74),(50,75),(51,76),(52,77),(53,78),(54,79),(55,80),(56,73),(57,65),(58,66),(59,67),(60,68),(61,69),(62,70),(63,71),(64,72),(89,111),(90,112),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,119),(98,120),(99,113),(100,114),(101,115),(102,116),(103,117),(104,118),(129,151),(130,152),(131,145),(132,146),(133,147),(134,148),(135,149),(136,150),(137,159),(138,160),(139,153),(140,154),(141,155),(142,156),(143,157),(144,158)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64),(65,69),(66,70),(67,71),(68,72),(73,77),(74,78),(75,79),(76,80),(81,85),(82,86),(83,87),(84,88),(89,93),(90,94),(91,95),(92,96),(97,101),(98,102),(99,103),(100,104),(105,109),(106,110),(107,111),(108,112),(113,117),(114,118),(115,119),(116,120),(121,125),(122,126),(123,127),(124,128),(129,133),(130,134),(131,135),(132,136),(137,141),(138,142),(139,143),(140,144),(145,149),(146,150),(147,151),(148,152),(153,157),(154,158),(155,159),(156,160)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,108,27,90),(2,111,28,93),(3,106,29,96),(4,109,30,91),(5,112,31,94),(6,107,32,89),(7,110,25,92),(8,105,26,95),(9,118,33,100),(10,113,34,103),(11,116,35,98),(12,119,36,101),(13,114,37,104),(14,117,38,99),(15,120,39,102),(16,115,40,97),(17,44,81,121),(18,47,82,124),(19,42,83,127),(20,45,84,122),(21,48,85,125),(22,43,86,128),(23,46,87,123),(24,41,88,126),(49,153,78,143),(50,156,79,138),(51,159,80,141),(52,154,73,144),(53,157,74,139),(54,160,75,142),(55,155,76,137),(56,158,77,140),(57,150,69,132),(58,145,70,135),(59,148,71,130),(60,151,72,133),(61,146,65,136),(62,149,66,131),(63,152,67,134),(64,147,68,129)]])

140 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G···4N5A5B5C5D8A···8H10A···10L10M···10T20A···20P20Q···20X20Y···20BD40A···40AF
order1222224444444···455558···810···1010···1020···2020···2020···2040···40
size1111221111224···411112···21···12···21···12···24···42···2

140 irreducible representations

dim11111111111122222222
type++++++-+
imageC1C2C2C2C2C4C5C10C10C10C10C20D4Q8D4C4○D8C5×D4C5×Q8C5×D4C5×C4○D8
kernelC5×C23.25D4C5×C4.Q8C5×C2.D8C5×C42⋊C2C22×C40C2×C40C23.25D4C4.Q8C2.D8C42⋊C2C22×C8C2×C8C2×C20C2×C20C22×C10C10C2×C4C2×C4C23C2
# reps1222184888432121848432

Matrix representation of C5×C23.25D4 in GL4(𝔽41) generated by

10000
01000
00370
00037
,
40000
04000
00400
0001
,
40000
04000
00400
00040
,
1000
0100
00400
00040
,
1100
394000
00380
00014
,
9900
03200
00014
0030
G:=sub<GL(4,GF(41))| [10,0,0,0,0,10,0,0,0,0,37,0,0,0,0,37],[40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,1],[40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[1,39,0,0,1,40,0,0,0,0,38,0,0,0,0,14],[9,0,0,0,9,32,0,0,0,0,0,3,0,0,14,0] >;

C5×C23.25D4 in GAP, Magma, Sage, TeX

C_5\times C_2^3._{25}D_4
% in TeX

G:=Group("C5xC2^3.25D4");
// GroupNames label

G:=SmallGroup(320,928);
// by ID

G=gap.SmallGroup(320,928);
# by ID

G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,560,589,288,856,7004,172]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^5=b^2=c^2=d^2=1,e^4=d,f^2=d*c=c*d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^3>;
// generators/relations

׿
×
𝔽